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We consider random Hermitian matrices made of complex or real M x N rec- 
tangular  blocks, where the blocks are drawn from various ensembles. These 
matrices have N pairs of  opposite real nonwmishing eigenvalues, as well as 
M - N  zero eigenvalues [for M > N). These zero eigenvalues are "kinematical" 
in the sense that they are independent of randomness.  We stt, dy tile eigenvalue 
distribution of these matrices to leading order in the large-N, M limit in which 
the "rectangularity" r = M / N  is held fixed. We apply a variety of  methods in our 
study. We study Gaussian ensembles by a simple diagrammatic method, by the 
Dyson gas approach, and by a generalization of the Kazakov method. These 
methods make t, se of the invariance of such ensembles under the action of sym- 
metry groups. The more complicated Wigner ensemble, which does not enjoy 
such symmetry properties, is studied by large-N renormalization techniques. In 
addition to the kinematical ~-function spike in the eigenvalue density which 
corresponds to zero eigenwdues, we find for both types of ensembles that if 
I t - 11  is held fixed as N---, .:r, the N nonzero eigenvalues give rise to two 
separated lobes that are located symmetrically with respect to the origin. This 
separation arises because the nonzero eigenvalues are repelled macroscopically 
from the origin. Finally, we study the oscillatory behavior of tile eigenvalue 
distribution near the endpoints of the lobes, a behavior governed by Airy func- 
tions. As r---, 1 the lobes come closer, and the Airy oscillatory behavior near the 
endpoints that are close to zero bret, ks down. We interpret this breakdown as 
a signal that r ~ 1 drives a crossover to the oscillation governed by Bessel func- 
tions near the origin for matrices made of square blocks. 

�9 KEY W O R D S :  Random matrix theory: random matrices with chiral block 
structure: Dirac operators in random backgrounds; transport in disordered 
conductors: large-N limit: large-N renormalization group; central limit theorem. 
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1. I N T R O D U C T I O N  

In random matrix theory, a number of authors ~8~ have studied the eigen- 
value distribution of a Hermitian matrix H of the form 

Co 
in which C is an N x N complex random matrix taken from an ensemble 
with the probability distribution 

1 
P(C) = ~ exp( - N Tr C 'C)  (1.2) 

with N tending to infinity. These so-called chiral matrices appear in a 
variety of physical problems. For  example, in quantum chromodynamics 
one typically integrates over the quarks and studies the so-called fermion 
determinant. The gluon fluctuations are then often treated approximately 
by saying that they effectively render the relevant matrix in the determinant 
random.~t.9..~ The chiral structure corresponds to left- and right-handed 
quarks. As another example, Hikami e t  al.  ~t-~3~ have proposed a model 
for electron scattering off impurities in quantum Hall fluids in the spin- 
degenerate limit. The blocks in (1.1) correspond to spin-up and spin-down 
electrons. In the same spirit, one may consider any problem involving 
random scattering between two groups of states, for example, between two 
cavities. As pointed out by Nagao and Slevin, ~4~ these matrices also appear 
in the study of transport in disordered conductors. In this paper, we study 
a slight generalization of this problem, with C taken to be an M • N 
rectangular matrix, with M and N both tending to infinity. For M - N  of 
order N ~ we expect the density of eigenvalues to be the same as for the 
M =  N case. Here we would like to study the case where the measure of 
rectangularity, 

r = M / N  (1.3) 

is held fixed as both M and N tend to infinity. Some aspects of this problem 
have been studied before and we will note the appropriate references below. 
We denote the matrix elements of C by 

Cj~,  where i = 1 , 2  ..... M and c t = l , 2  ..... N 

With no loss of generality we assume throughout this paper that M>7 N, 
namely that r >~ I. Our  notation is such that Latin indices always run from 
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1 through M, whereas indices denoted by Greek letters run from 1 to N. 2 
As a result of their specific structure these matrices have N pairs of 
opposite real nonvanishing eigenvalues, as well as M - N  zero eigenvalues. 
These zero eigenvalues are "kinematical" in the sense that they are inde- 
pendent of the probability distribution. 

We derive the eigenvalue distribution of these matrices to leading order 
in the large-N, M approximation for various ensembles of random blocks. 
We consider random Hermitian matrices made of complex or real M x N 
rectangular blocks, where the blocks are drawn either from ensembles 
symmetric under some group action or from nonsymmetric ensembles. For  
concreteness, we specialize to Gaussian ensembles in the first case. In the 
second case we analyze matrices of the "Wigner class," namely blocks whose 
entries are drawn independently of one another from the probability dis- 
tribution. We find, not surprisingly, that to leading order in the large-N, M 
approximation, all the ensembles we studied result in the same eigenvalue 
distribution. In addition to the kinematical J-function spike in the eigen- 
value density which corresponds to zero eigenvalues, we find that if I r -  11 
does not scale to zero as N ~  oo, the N nonzero eigenvalues give rise to two 
well-separated lobes that are located symmetrically with respect to the 
origin. For  random Hermitian matrices that are not made of blocks, the 
qualitative universality of the Wigner semicircular eigenvalue distribution is 
well understood as a result of the competition between level repulsion and 
the fact that very large eigenvalues are suppressed. Similar arguments 
explain the universality of the eigenvalue distribution we observe here for 
matrices made of rectangular blocks. Each lobe arises qualitatively for the 
same reasons that lead to the semicircular distribution. In addition, separa- 
tion of the two lobes arises because the nonzero eigenvalues are repelled 
from the origin by the macroscopic number ( M - N )  of zero eigenvalues. 

In this paper C*C and CC* are Hermitian nonnegative matrices of 
dimensions N • N and M x M, respectively. We are interested in the expec- 
tation value of the resolvent 

1 1 
~rN'M(Z)--N + MTr z-- H (1.4) 

A straightforward calculation then yields a simple relation between 
(~N, M(z) and the resolvents of C*C and CC*, 

t~N.M(Z)_N+M[Tr~N~ 1 z 2 _ l c , ]  z2 _ C,C + TrlM~ (1.5) 

2 We shall deviate slightly from this convention only in Section 2, where ll, v will run over all 
possible M + N values. No confusion should arise. 
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where the subscript on each trace indicates the dimension of the matrix 
which is being traced over. The z 2 dependence of the resolvents in (1.5) 
arises because the eigenvalues of H in (1.1) occur in real opposite pairs. 
Indeed, given an N-dimensional vector x and an M-dimensional vector y 
such that (i~i) is an eigenvector of H for an eigenvalue 2, then (".,.) is an 
eigenvector for - 2 .  In other words the matrix H (the "Dirac" operator, 
with its "chiral" components C and C*) anticommutes with the "Ys" matrix 

1 x --01 M) 
0 

The cyclic property of the trace implies the basic relation 

1 1 M- -N  
Trl ,m z 2 _ CC* = Trim z- - C+ C~ + ----r--z_ (1.6) 

This relation reflects the fact that C*C and CC* share the same strictly 
positive eigenvalues, but the M x M matrix CC* has additional M -  N zero 
eigenvalues. 

Combining (1.5) and (1.6), we therefore arrive at the two alternative 
expressions 

M - N )  1 2z 1 
(~N'at(z)= N ~  7 + - M - - ~ T r ' N ' z 2 - - C * C  

N - M )  1 2z 1 
= ~ - + M + N T r c , m z 2  CC , (1.7) 

which allow us to express (~^,. a+(z) solely in terms of either C *C or in terms 
of CC*. For later use we introduce the notation 

1 
Gu(n') = TrINI w-- C*C' 

1 1 (1 .8 )  
(~,,.t(w) = ~ Tr,,,,, w - CC* 

in terms of which we rewrite (1.7) as 

( M - N )  I_+r 2N ~ ^ , 
(~u.,vt(Z)= ~ Z t , M + N / z G ' v ( z - )  

/ N - M ' ~  I / 2M "~ 
= _ + (1.9) 
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Throughout  this paper 0 stands for an unaveraged resolvent. The corre- 
sponding averaged quantity will be denoted simply by G. 

This paper is organized as follows. We will first apply a variety of 
methods to study the density of eigenvalues. In Section 2 we derive the 
density of states of matrices H whose rectangular blocks are drawn either 
from the unitary or from the orthogonal Gaussian ensemble, employing 
diagrammatic techniques. Section 3 is devoted to blocks with independent 
entries (which we referred to t14~ as the "Wigner class"). This ensemble is 
more difficult to handle because of lack of symmetry. We overcome this dif- 
ficulty by applying recursive manipulations of the large-N renormalization 
group t J5 17~ We find that as far as the density of states is concerned, this 
ensemble falls (in the planar limit) into the same universality class as the 
symmetric ensembles. In the Appendix we provide a proof of the central 
limit theorem by means of the large-N renormalization group as yet 
another example of its usefulness. In Section 4 we present the Dyson gas 
approach to these issues. After completing our work we realized that the 
results we obtained following the Dyson gas approach already appeared in 
ref. 18. Nevertheless, we include this section here for the paper to be self- 
contained and also because Section 5 partly relies on it. In Section 5 we 
first generalize Kazakov's method ~9~ to rederive the results of Section 2, 
and then use this method to determine the oscillatory fine structure of the 
eigenvalue density in Section 2, close to its support endpoints. We find that 
this oscillatory behavior is governed by Airy functions. As r--* 1 the lobes 
come closer, and the Airy oscillatory behavior near the endpoints that are 
close to zero breaks down. We interpret this breakdown as a signal that in 
the limit r ~  1 drives a crossover to the oscillation near the origin in the 
density of eigenvalues of matrices made of square blocks, an oscillation 
governed by Bessel functions. 

2. A D I A G R A M M A T I C  A P P R O A C H  

As a simple warm-up exercise, and in order to set the stage, let us first 
apply the by-now well-known diagrammatic method to derive the Green's 
function 

1 (/Tr 1 \ 
O( z ) = -N-+--M \ z ---5-ff / (2.1) 

in the large-N, M limit. To this end, let us consider the averaged resolvent 

,, I f  1 V ' \  
(2.2) 



478 Feinberg and Zee 

where the indices/~ and v run over all possible M + N values. The average 
in (2.2) is performed with respect to the Gaussian measure 

where 

P(C) = 1 exp[ - ~ m 2 Tr C ' C ]  (2.3) 

M N 

Z=~ I-I I-I d R e C , ~ d l m C , ~ e x p [ - ~  m2TrC*C] (2.4) 
i = l  ~ = 1  

is the partition function. We have introduced a normalization factor of 
in (2.3) so as to be consistent with (1.2) in the N =  M case. This fac- 

tor renders (2.3) and (2.4) manifestly symmetric under M*-+ N. Some other 
normalizations, not symmetrical under M ~ N, can always be introduced 
by multiplying the parameter m 2 by an appropriate factor of r =  M/N. 
Borrowing some terminology of gauge field theory, we may consider C, C* 
as "gluons" (in zero space-time dimensions) and G~(z) as the propagator 
of "quarks" (with complex mass z) which couple to these "gluons." We 
now proceed to calculate G',~(z) diagrammatically. The two-point correlator 
associated with (2.3) is clearly 

1 
( c ,~ c.*,/, > s .s.~, (2.5) 

�9 m 2 , / / - ~  
v 

This expression is the gluon propagator. The bare quark propagator is 
simply 1/z. The quark-quark-gluon vertex factor is 1. These Feynman rules 
are summarized in Fig. 1. 

Fig. I. 

l 1 i 
m2 ~ 8j 8~ 

. i . j 
v 

(a) (b) 

i (x 

i cx 

(c) 
The Feynman rules: {a) The bare quark propagator, (b) the gluon propagator, 

(c) the bare quark-quark-gluon vertex. 
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�9 + 

i j . j . j 

i j 
+ . . .  

Fig. 2. The first few planar diagrams that contribute to Gj to leading order in the large-N, M 
approximation. 

The weight (2.3) is Gaussian, so there are no gluonic self-interactions. 
Due to the block structure of H, the quark-quark-gluon vertex converts 
the color type carried by a quark. Namely, it converts a quark q~ into a 
quark q~ (and vice versa), but not into a quark q;. Recall that the dominat- 
ing diagrams in the large-N, M limit are all planar, and thus do not contain 
crossed color lines. Moreover, the (single) fermion line must always be at 
the boundary spanned by the planar graph. Consider now a typical planar 
Feynman diagram in the perturbative expansion of (2.2). Tracking the 
color indices through the diagram, we see that the rectangular off-diagonal 
blocks of (2.2) vanish identically 

G~.(z) = G~(z) = 0 (2.6) 

while the diagonal blocks are proportional to unit matrices, 

(2.7) 

Upon comparison with (1.8) we clearly have 

gN(Z) =ZGN(Z z) and gM(z) =zGM(z 2) (2.8) 

Figure 2 shows some of the diagrams which contribute to G~(z) to leading 
order in large M, N. 

A simple direct calculation shows that the off-diagonal blocks of 
1/(z - H) are odd in C, C* and thus do not contribute to (2.2), independently 
of the perturbation expansion. This conclusion clearly remains valid if we 
generalize (2.3) into any other probability distribution which is even in H, 
for example, a distribution of the form P(C)=(I /Z)exp[-Tr  V(C*C)]. 
The self-energy corrections Z^,(z) and ZM(z) are defined as usual by 

1 1 
gu(z) =z--Zu(z) '  gM(z) =z--ZM(z) (2.9) 
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J 

N 

Z 
O~=l 

13 Z i=1 1~ 

Fig. 3. The  two Schwinge r -Dyson  identities.  

and correspond to the sum over all one-quark irreducible graphs contribut- 
ing to (2.2), namely, the amputated quark propagator. For the Gaussian 
distribution (2.3), the propagators gN, g,u and self-energies Z',v, s are 
related by the simple Schwinger-Dyson identities, which we display 
diagrammatically in Fig. 3. 

We thus have from Figs. 1 and 3 

= ' - 3 -  X u ( Z ) = m '  -N/N/~ ~ G~(z) g,,,(z) (2.10) 
- ~ / N M  i =  i m -  

and similarly, 

1 
~M(-- ' )  = g N(  "7" ) (2.11 ) 

Ili 2 ~ "  

We substitute the last two equations into (2.9) and obtain the two coupled 
equations 

g N ( Z )  = Z - -  gM(z) 

l I 1 1 , 12, g M ( z )  = z - -~gN( .7 - )  

for gu and g,u. These two equations clearly transform into one another 
under i"--* l/r, which interchanges g,v and g,~.t [this is as it should be if the 
normaIization t~ctor in (2.3) is symmetrica! under M,--~ N, that is, if m z is 
independent of r]. By definition, both propagators behave as l/z in the 
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asympto t ic  region z ~ or. This asympto t ic  behav ior  picks up the physical 
solution of  the quadrat ic  equat ions  for gN and gM, and we find 

2 1 
- [z  2 - ab - x / ( z  2 - a2)(z 2 - b 2) ] 

g u ( g )  (a I b)  2 Z 

g M ( z )  - - -  
2 1 

[z 2 + ab - x / ( z  2 - a - ' ) ( z  2 - b-')] 
(a b) 2 + z 

(2.13) 

where 

1 r - i / 4 ) ,  1 1,4 i/4) a = - -  ( r  I/4 q- b = - -  (r " - r -  (2.14) 
m IT/ 

Note  that  b measures  of  the deviat ion of  rectangles f rom squares: for r = 1, 
b vanishes. The  Green ' s  function (2.1) is thus given by 

1 N+a,t ~, _ gX(Z) + rg,vt(z) (2.15) 
= y~ G , , ( ~ )  = I + , .  G(z) N + M j , = )  

where we used (2.2) and (2.7). Finally, upon  subst i tut ing (2.13) into (2.15), 
we find that  the averaged Green ' s  function of  H is 

2 l [ z 2 _ x / ( z , _  b2)(z2 a,_) ] (2.16) G(z) = a2 + b2 z 

Let us inspect now some of the features of  (2.16). As we discussed in 
the introduct ion,  H has M - N  "kinemat ica l"  zero eigenvalues, regardless 
of  any ensemble averaging. In contrast ,  C+C on the average does not  
have any zero eigenvalues, as we have already discussed. Thus,  by defini- 
tion, G,v. M(z) has a simple pole at z = 0  with residue ( M - N ) / ( M + N ) =  
( r - l ) / ( r +  1), which is the first term on the right side of  (1.9). As we 
can see f rom (2.14), our  expression (2,16) clearly satisfies this condi t ion 
provided [ (z  2 - b2)(z 2 -  a2)] t/_, __, _ ab as z ---, 0. This sign of the square 
root  cor responds  to drawing all four cuts associated with the square root  
to the left of  the branch point  out  o f  which they emanate .  In addit ion,  
(2.14) is ~onsistent with the required asympto t ic  behavior  1/z of  (2.16) 
as z -+  oo. The  averaged eigenvalue density of  H is the discontinuity in 
(2.16) as we cross the real axis, except for the origin, which contains  the 
"kinemat ica l"  zero eigenvalues of  H. It is therefore given by 

r - -1  2 O [ ( a ' - - 2 2 ) ( 2 2 - b 2 ) ]  
,o(2) = r - ~  fi(2) -) b2 x / ( a 2 - 2 z ) ( ; Q - b  2 ) (2.17) 

- rc 121 a 2 4- 
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The Green's function (2.16) corresponds to the Hamiltonian (1.1). 
With only little more effort it is possible to generalize our discussion to 
calculate the Green's function of the Hamiltonian 

where e is a fixed "energy." The off-diagonal blocks fluctuate as before. This 
Hamiltonian may describe, for example, tunneling between two energy 
levels with degeneracies N and M that are separated by an energy dif- 
ference 2e. For such a Hamiltonian (1.5) is modified into 

z + e  - e )  Gg(w ) (2.19) GN. M(Z)=~-~ GN(W)+r(7+ 1 

where 

W : Z -  - -  e -  

such that the identifications (2.8) become 

gN(Z) = ( .g  + g )  GN(|'|; ) and gg(Z) = (z--e) GM(W) (2.20) 

The bare quark propagator in Fig. 1 is split into two pieces, namely 
1/(z-e) for quarks carrying a U(N) color index and 1/(z+e) for quarks 
carrying a U(M) index. The definitions in (2.9) change accordingly into 

1 1 
gN(Z)--Z__e__~,N(Z), gM(Z)--Z+8__~M(Z ) (2.21) 

The Schwinger-Dyson identities (2.10) and (2.11) are unchanged. We note 
that the set of equations (2.10), (2.11), and (2.21) are now invariant under 
r ~  1/r and e ~  - e ,  which permutes the two energy levels in H and thus 
interchanges gN and gg-  With these observation it is straightforward to see 
that (2.13) becomes 

2 1 
gN(Z) (a_b)2z_e 

2 1 
gg(Z) 

(a+b)'-z+e 

- - [ w - a b - . ~ ( w - a 2 ) ( w - b 2 ) ]  

- - [ w + a b - x / ( w - a 2 ) ( w - b 2 ) ]  
(2.22) 
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with the same a and b as before. Thus, (2.15) and (2.16) finally become 

2 1 
G(Z)-a2 +b 2 { z [w-x / (w-a2) (w-b~- ) ]  -abe} (2.23) 

W 

which is manifestly invariant under a permutation of the two energy levels 
of H. Note that the matrix (2.18) has precisely M - N  "kinematical" 
(i.e., independent of the ensemble for C) eigenvectors which correspond to 
eigenvalue - e .  This means that (2.23) has a simple pole at z =  - e  with 
residue ( r -  1 )/(1"+ 1) and no pole at z = + e. This property holds provided 
[ ( w - a 2 ) ( w - b 2 ) ]  i J2 __, _ ab as w--, 0, which we already encountered in 
our analysis of the e = 0 case. The eigenvalue distribution corresponding to 
(2.23) is therefore 

r -  1 O[ (a2 q- e2-  22)( dt2--b2-e2) ] 
p(d.) = ~ ~(2 + e) + rr(a 2 --I- b 2) 

2 I,ll b-" 
x22_e-------- ~ - 2 2 ) ( 2 2 -  - e  2) (2.24) 

In the limit One)--* co, the randomness in (2.18) is suppressed, and 
(2.24) should reproduce the eigenvalue distribution of the deterministic 
part of (2.18). This is indeed the case. In the limit we have a/e, b/e--*O, 
so both lobes in (2.24) shrink. Each lobe contains N eigenvalues, whose 
number is preserved as the lobes shrink to zero width, and thus produce 
6-function spikes of strength N/(M+N) each. The right lobe produces 
in this way a spike at 2 = e, while the left lobe coalesces with the already 
existing ~(2 +e )  spike in (2.24), which contains M - N  eigenvalues, and 
thus produces a spike containing M eigenvalues. 

3. BLOCKS WITH I N D E P E N D E N T  M A T R I X  ELEMENTS A N D  
THEIR R E N O R M A L I Z A T I O N  GROUP A N A L Y S I S  

It is rather difficult to apply the diagrammatic method and sum all the 
planar diagrams that contribute to G(z) in case of non-Gaussian ensembles. 
For such ensembles that are invariant under the action of some symmetry 
group one may invoke other methods. However, these methods are inap- 
plicable to ensembles lacking the action of a symmetry group. 

A class of block structure random matrix models that is not unitary 
(or orthogonal) invariant involves matrix blocks C in which each matrix 
element Ci~ is randomly distributed independently of the others, with the 
same distribution for all matrix elements. We normalize the matrix 
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elements Cg~ symmetrically with respect to M and N, such that the two- 
point correlator 

0-2 

x~MN ' 

of this probability distribution would coincide 
correlator of the Gaussian distribution 

dlL(C)~exp I v/MvNTrC*C]a- 

(3.1) 

with the two-point 

For notational simplicity we replaced here the m - :  in (2.3) by a 2. For this 
class of matrix models the method of orthogonal polynomials is not 
directly applicable, and alternative methods should be sought for. 

For concreteness as well as for simplicity, we consider below the 
probability distribution in which C~ may take one of the two values 

a 
q-- (NM)I/4 (3.2) 

with equal probability, where 0- is a finite number. However, it will be clear 
from the discussion below that our conclusions are not limited to this 
particular distribution. In order to keep our formulas generic, we therefore 
treat the C;~ as complex numbers, as long as we do not utilize (3.2) 
explicitly. 

For this ensemble [ C i ~ [ 2 = a 2 / ~ - ~  deterministically, and thus in 
particular the diagonal matrix elements of C*C and CC* do not fluctuate 
and are given by 

(C*C)~=0- ~- ~ and (CC*)~i=a2/~ �9 (3.3) 

We use this convenient property of (3.2) in our calculations below. This, 
however, is done with no loss of generality, because in the generic case the 
nonfluctuating quantities in (3.3) should simply be replaced by their 
averages, which are given on the right-hand side of (3.3). 

The random matrix distribution we consider is a generalization of the 
very first model studied by Wigner ~2~ to random matrices with block struc- 
ture. Indeed, Wigner originally considered large N x N random Hermitean 
matrices ~b, whose elements ~b~ = ~bj~ were either + alv/-N or - alx/~, with 
equal probability. This matrix model follows a semicircle law for the 
density of eigenvalues. This semicircular profile of the eigenvalue density 
was rederived recently I ts~ using a large-N "renormalization-group"-inspired 
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approachJ ~6~ In what follows, we apply the same method to find the eigen- 
value density p(2) of the random block matrices with independent entries 
introduced above. 

We are interested in 

G(z)  = lim GN, ,~I(Z) ( 3 . 4 )  
N .  ? ,4  ~ :,'- 

from which p ( 2 ) = ( l / r 0  Im G ( 2 - i e )  may be extracted immediately. We 
start our "renormalization group" calculation by trying to relate 
GN+LM(Z) to GN.M(Z). To this end we consider the M •  1) block 

C ' = ( C , v )  

where v is an M-dimensional vector. By definition, each element of C' may 
now take one of the two values _+ a / [ (N+  1) M]  ~/4 with equal probability. 
A comparison with the original N •  M block suggests then that we may 
draw the C'i, from (3.2) provided we rescale the a parameter  in that 
equation into 

= / N "~ ''4 
a '  a \ ~ - - ~ j  (3.5) 

The nonfluctuating norm squared of v is then given by 

v*v =- (C'*C')N+ i. N+ I = a - ~ "  (3.6) 

Following ref. 15, we obtain 3 after some straightforward algebra 

1 
( N +  1) 0N+~(w)~Tr(N+I~ W-- C'*C' 

1 
= TrIx~ w - -  C+C - C*[ v | v * l ( w -  v 'v )]  C 

+ (3.7) 
w - v*v - v * C [ 1 / ( w -  C*C)]  C*v 

where w = z 2. We now average over the distribution governing C', keeping 
terms up to dA(N~ We first average over the components of v. 

Expanding the two fractions on the right-hand side of (3.7) into 
geometric series, we see that we have to average products of the form 

Tile analogue of r*r in ref. 15 was a quantity of 8(I/N) which was therefore neglected in the 
N ~ ~ limit. Here rtv is a finite number and therefore must be retained. 
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v* vjv* v~... v I,* vq, which contract against products of elements of matrices 
independent of the v;. Clearly, 

Oa 2 
C( ( l)/~ [)]) ~--- < C'i~V+ [ N-I-I)  - -5i j  

�9 ,. x / M N  

simply produces a single trace, multiplied by a'2/x/-M--N. The next non- 
vanishing correlator is 

O-t4 
< o,o: v,> = ( a,A-, + a,k a; , -  aok,) (3.8) 

where 6(jk/= 1 when i = j = k = l  and 0 otherwise. The last piece in (3.8) is 
by definition the fourth-order cumulant of the distribution, added to the 
usual pairs of Wick contractions. The correlator (3.8) then contracts 
against two matrices in the geometrical series mentioned above, producing 

r2 2 a term of order (a /~ /NM) . In the large-N, M limit, the dominating term 
in this contraction is the term with the maximal independent index summa- 
tions, which amounts here to two traces. These two traces are produced 
here only by a single pair of Wick contractions. The other pair of Wick 
contractions (which produces only a single trace) as well as the fourth- 
order cumulant are therefore negligible in the large-N, M limit and may be 
discarded to leading order. This structure persists for correlators of higher 
order. The 2n-point correlator produces in the geometric series a term 
proportional to (a'2/,,//-NM) ''. In that term, a unique string of n Wick con- 
tractions produces the maximal number n of traces, and therefore 
dominates the large-N, M limit. At this point it becomes clear why our 
calculation and therefore the results it leads to are insensitive to the details 
of the distribution of the Cir. Clearly, only Wick contractions dominate 
these averages in this limit, and thus only the two-point function (3.1) of 
the distribution matters. This insensitivity to the details of the distribution 
was checked explicitly in ref. 15, where various distributions led to the 
same result. The leading terms in the geometric series may be resummed, 
and one finds the v average 

1 
( T I ' , N + I , w _ C  C ) ,  ; 

1 0 F cr '2 
=Tr, m w _ C , C + ~ w l o g  [ w + ( N - M ) ~  

w Tr,,v~ w -  *C (3.9) 
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Invoking large-N factorization, we can average over the remaining block C 
immediately, by replacing (~r inside the logarithm in (3.9) by its average. 
Thus, 

( N +  1) GN+I(W) 

= NGN(W) +-~w log w + 
(1 --r) a '2 a '2 ] 

V~ ~ ~ wG N( W ) (3.10) 

Remarkably, in the large-N, M limit, the v average of (~N+ I(w) involves 
only dN(W), and thus (3.10) is indeed a local (along the N axis) recursion 
relation involving only Gu-type Green's functions�9 This means that the 
large-N "renormalization group" recursions for the full Green's function 
GN. M close among themselves, as we now show. 

Combining (1.9) and (3.10), we obtain the recursion relation for the 
complete averaged Green's function (1.4) 

(N + M+ 1 ) GN+ I, M( Z, a t )  - -  (N + M) GN, M(Z, 0 J) 

~z [ (1 - r )  a'~- (r+l)a'2 ] 
= l o g  z +  2zx/,- ~ 2x/~ GN.M(Z,a') (3.11) 

where we have displayed the explicit a' parameter associated with the 
larger C' block. 

In the large-N limit (3.5) becomes a' =a-a / (4N)+  .... In this limit, 
the only possible explicit N, M dependence in GN, M is through the finite 
ratio r =  M/N. Therefore we may write the left-hand side of (3.11) as 

[ ( N +  M +  1) GN+I,M(Z, a ' ) - - (N+M) GN.M(Z, O')] 

+ (N + M)[ GN.M(Z, a)--GN.M(Z, a')]  

0 N + M  0 
= a---~ [ (N + M) GN. M(Z, 0") ] -F ~ a ~ GN. M(Z, tV) 

=GNM(Z,a)_r(r+I)fl_~_GN.M(Z,a ) r + l  a �9 Or +-----4---a~aGN. M(Z,a) (3.12) 

To leading order in 1/N we may drop the N, M indices of the Green's func- 
tion, replacing it by its asymptotic limit (3.4), and replace a' by a inside the 

822/87/3-4-2 
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logarithm in (3.11). The recursion relation (3.11) thus becomes a partial 
differential equation 

a r + l  a 
G(z, a) - r(r + 1) Or G(z, a) + T a Oa G(z, a) 

= ~ - l o g [ z + ( 1 - - r )  a2 ( r + l ) a  2 ] 
z 2z V/~ 2 ~ "  G(z, a) (3.13) 

It is easy to see from (1.4) and (3.4) that G(z, a) satisfies the simple 
scaling rule 

G ( z , a ) = l G ( ~ ,  1) (3.14) 

which implies that 

0 a 
a ~ G(z, a) = - z ~ G(z, a) - G(z, a) (3.15) 

Thus, using (3.15) to eliminate a(0f0a) G(z, a) from (3.13), we arrive at the 
final form of our differential equation for G(z, a), namely, 

O �9 r + l  O 
3 --_____Jr4 G(z, a) - r(r+ 1 ) Or G(z, a) - T z Oz G(z, a) 

(1 - r )  a-' ( r+ l )a -G(z ,a )  (3.16) 
= _log z-+ 2zx//~ 2x/~  

This equation tells us how a change in z can be compensated by a change 
in the rectangularity r. 

As a consistency check of our results we can repeat the recursive pro- 
cedure discussed above, but instead of adding an M-dimensional column 
vector to C, we add to it an N-dimensional row vector u, creating an 
(M + 1 ) • N block C" 

The recursion relation in this case connects, in the large-N, M limit, 
GM+ i(w) and Gg(w), and therefore relates GN. M+ 1(z) to G^, M(z)- Thus, 
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we simply interchange N~--~ M in all steps of our calculation above, namely, 
r,-* I/r. The differential equation for G(z, a) we derived from this recursion 
reads 

_ _  0 r + l  0 
3r-14r G(z' a) + (r + l ) ~ G(z' a)--4-r-r Z-~z G(Z' a) 

~__~, I (1-r )  a2 (r+l)a2 ] 
= log z 2z x/~ 2 v / r  G(z, a) (3.17) 

which is indeed the transform of (3.16) under r ~  1/r. 
The fact that G(z, a) satisfies both (3.16) and its transform under 

r ~ 1/r means that G(z, a, r) = G(z, a, 1/r). This r-inversion symmetry of G 
should be anticipated from our N, M-symmetric definition of the prob- 
ability distribution (3.1) in the first place. An important consequence of this 
r-inversion symmetry is that (0/0r) G vanishes 4 at r =  1. Thus, at the point 
r =  1, i.e., for Hamiltonians made of square blocks, (3.16) reduces to the 
differential equation 

G(z ,a) -z  ~zG(z,a)=2 ~log[z-a2G(z,a)]  (3.18) 

previously derived in ref. 15, as expected. 
As was stated at the beginning of this section, only the two-point 

correlator (3.1) of the random matrix distribution was relevant in the 
derivation of (3.16). Hence, the Green's function G(z) of any distribution 
obeying (3.1) is a solution of (3.16). We have thus shown that for the 
Wigner ensemble, G(z) and the density of eigenvalues are universal. In 
particular, the complex Hermitian distribution (2.3) as well as the real 
symmetric distribution (4.16) of the previous section respect (3.1) upon the 
identification m2= a-- ' .  Thus, their Green's function (2.16) must be a solu- 
tion of (3.16). A simple check verifies that this is indeed the case. Therefore, 
the density of eigenvalues p ( 2 ) =  ( l / n ) I m  G ( 2 - i e )  is given by (2.17). 

As yet another example of the usefulness of the large-N renormaliza- 
tion group' we use it to prove the central limit theorem in the Appendix. 

By a simple power counting argument (see Section 2 of ref. 14, and 
also ref. 17), it is straightforward to extend the diagrammatic method of the 
previous section to treat the probability distribution considered in this 
section as well. 

4 This is simply because if f (r) =f(r-I), then (0/0r)f(r) = - r--'(0/0r -I) J'(r-I), and there- 
fore f'( 1 ) = - f ' (  1 ) = 0. 
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4. DYSON GAS APPROACH 

In this section we present the Dyson gas approach to study the eigen- 
value distribution of matrices made of rectangular blocks. After completing 
our calculations we realized that our results were previously obtained by 
Periwal et al. c'8~ We assume that the M x  N rectangular blocks Ci~ of the 
Hamiltonian H in (1.1) admit the action of some symmetry group. Here 
we focus on blocks with complex entries, but we will state some results 
concerning blocks with real entries in the end. The complex blocks are 
endowed with the natural U(M) x U(N) action 

C-* VCU, Ve U(M), Ue U(N) (4.1) 

One can use this action to bring C to the form 

C=( AN I (4.2) 
k O(~ l  - -  N) x N ~  

where AN is a real diagonal N x N  matrix diag(21 ..... 2N). Therefore, the 
Hermitian matrix H in (1.1) is a generator of the symmetric space 
U(M+ N)/U(M) | U(N). From these considerations it is clear that CtC 
may be diagonalized into diag(2~ ..... 2~) and CC* into the same form, 
but with additional M - N  zeros, in accordance with (1.6). The probability 
distribution has to be invariant under (4.1). Here we consider distributions 
of the form 

1 
P(C) = ~  exp[-,,/-M--N Tr V(C*C)] (4.3) 

where V is a polynomial and Z is the partition function of these matrices. 
We are interested only in averages of quantities that are invariant 

under (4.1). We thus transform from the Cartesian coordinates Ci~ to polar 
coordinates Vo., Us/t, and 2~. Integrations over the unitary groups are 
irrelevant in calculating averages of invariant quantities, which involve 
only the eigenvalues s~ = 2~ of CtC. 

The partition function for these eigenvalues then reads ~ ts) 

N ozo N 

s 2 Z=  ds=exp[-x/-N--M V(s=)] ]-[ s~ -u I-I (y-sa)  (4.4) 
= 1  [S=I I ~ < ) , < d ~ < N  

The Iast two products constitute the Jacobian associated with polar coor- 
dinates. In particular, I-[ (s~.- s,~) ~ is the familiar Vandermonde determinant. 
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The other product is a feature peculiar to nonsquare blocks. As a trivial 
check of the validity of (4.4), note that the integration measures in (2.4) 
and (4.4) have the same scaling dimension under C ~  ~C, ~ > 0. 

Following Dyson, we observe that (4.4) may be interpreted as the 
partition function for a one-dimensional gas of particles whose coordinates 
are given b ~ h e  eigenvalues s~. The integrand in (4.4) may be expressed as 
exp[ -~/NM g],  where 

r -  1 s=] - - -  1 ~, log(s~--s/~) 2 (4.5) 

is the energy functional of the Dyson gas. In the large-N, M limit (4.4) is 
governed by the saddle point of (4.5), namely by a C+C eigenvalue dis- 
tribution {s~} that satisfies 

O~ V'(s~) r - I  1 2 i '  1 (4.6) 

Here the prime over the sum symbol indicates that fl = ~ is excluded from 
the sum. 

We now turn our attention to the average eigenvalue density of H, 
which we may readily deduce ~2~) from the averaged Green's function 
GN. M(z) in (1.4). The s~ are eigenvalues of C+C. We thus calculate first 
GN(Z2), which, according to (1.8), is given by 

GN(W) = N  E ,= (4.7) 

Here the angular brackets denote averaging with respect to (4.4). By defini- 
tion, GN(W) behaves asymptotically as 

1 
G N ( W  ) > - -  ( 4 . 8 )  

w ~  ~ W 

It is clear from (4.7) that for s>O, e ~ O +  we have 

1 GN(s-ie)=~[P.P. +-~ ~ (d(s-s~)) (4.9) 
~ = l  ~ = 1  
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where P.P. stands for the principal value. Therefore the average eigenvalue 
density of C*C is given by (1/~z) Im GN(S -- i8). In the large-N, M limit, the 
real part of (4.9) is fixed by (4.6), namely 

1is 11 ReG,xds- ie)=~ V ' ( s ) - ( r - 1 )  s (4.10) 

The potential V(s) in (4.3) clearly has at least one minimum for s > 0, and 
will therefore cause the eigenvalues to coalesce into a single finite band or 
more along the real positive axis. Moreover, the log s term in (4.5) clearly 
implies that the {s~} are repelled from the origin. We thus anticipate that 
the lowest band will be located at a finite distance from the origin s = 0. 

At this point we depart from discussing the general distribution and 
assume for simplicity that the probability distribution is given by the 
Gaussian distribution (2.3) with 

V(s) = m2s (4.11 ) 

In this case we expect the {s,} to be contained in the single finite segment 
O<b 2 < s < a  2, with a > b > 0  yet to be determined. 5 This means that 
GN(W ) should have a cut connecting b 2 and a 2. This conclusion, together 
with (4.10), implies that GN(W ) must be of the form 

'[ ,] aN(w)=  ,v/Tm-'-(,'-1) w +F(w),/(w-b-')(w-a'-) 

where F(w) is analytic in the w plane (with the origin excluded.) The 
asymptotic behavior (4.8) then fixes 

./7,- ii:/2 
F ( w )  = v 

2 W ' 

and thus 

aN(w) [,/7 

(4.12) 

m 2 w - r + l - v / r m  2 x / ( w - b z ) ( w - a 2 ) ]  (4.13) 

The eigenvalue distribution of C*C is therefore 

1 Im Gu(s - -  i e )  - -  ~ m2 /~(s)=~ -- 2ns x / ( s - b 2 ) ( a 2 - s )  

for bZ< s < a-', and zero elsewhere. 

5 We find below, of course, that  a and  h coincide with tile express ions  in (2.14). 

(4.14) 
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We now substitute Gu(z 2) from (4.13) into (1.9) to obtain an expression 
for GN. M(z). As we discussed in the introduction and in Section 2, GN. M(z) 
has a simple pole at z = 0  with residue (M--N)/(M+ N ) =  ( r - 1 ) / ( r  + 1), 
which is the first term on the right side of (1.9). We thus conclude from 
(1.9) that WGN(W) must vanish at w=0 ,  which in turn implies a second 
condition 6 on a, b, namely 

r - 1  
ab = m - ~  (4.15) 

We are now able to fix a and b from (4.12) and (4.15) and find that they 
are given by (2.14). We thus find that GN. M(z) coincides with (2.16) and 
that the averaged eigenvalue density of H is the expression in (2.17). 

We close this section by sketching a similar analysis of Gaussian 
random Hamiltonians made of real M x N blocks C. We parametrize the 
Gaussian real orthogonal ensemble by 

ex. E ,4,6, 

with the partition function 

i m- rc (4.17) z = I-I I-I dc;~ exp - T  ~ Tr C 
i = 1  ~ x = l  

The two-point correlator associated with (4.16) is clearly 

1 
( C,~ Ci/r - ../==-:-- ~jO~/~ (4.18 ) 

m 2 ~/NM 

Note that (2.3) and (4.16) are conventionally parametrized in such a way 
that (2.5) and (4.18) coincide. 

The partition function for the corresponding Dyson gas reads ~ J8~ 

N , ,:r N 

= 1  0 [1=1 I ~<I . ,<r  ~< N 

(4.19) 

~'Note that the Riemann sheet of the square root in (4.13J is such that 
x / j 0 - b - ' ) ( 0 - a  2) = - a b ,  as we already observed in Section 2. 
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As before, the last two products constitute the Jacobian associated with 
polar coordinates. The energy functional ~ of the Dyson gas is now 

1 u m2s~ - ~ log(s~-- s/~) 2 

(4.20) 

Thus, in the large-N, M limit, (4.20) becomes precisely one-half of the 
corresponding expression (4.5) for complex Hermitian matrices, and our 
discussion following (4.6) through (4.15) remains intact. 

5. KAZAKOV'S  M E T H O D  EXTENDED TO RECTANGULAR 
COMPLEX MATRICES 

5.1. Contour  Integral 

Gaussian matrix ensembles may be studied in many ways. Several years 
ago, Kazakov introduced a method ~9~ for treating the usual Gaussian 
ensemble of random Hermitian matrices which was later extended and 
applied to a study of random Hermitian matrices made of square blocks. ~v~ 
Here we generalize it to random Hermitian matrices made of rectangular 
blocks. It consists of adding to the probability distribution a matrix source, 
which will be set to zero at the end of the calculation, leaving us with a 
simple integral representation for finite N. As we will see, one cannot let 
the source go to zero before one reaches the final step. We modify the 
probability distribution (2.3) of the matrix 7 C*C by adding a source A, an 
N x N Hermitian matrix with eigenvalues (a~ ..... aN): 

1 _ / , ~ - ~ T r C , C _ v / - ~ T r A C , C )  PA(C) =~-~A exp( (5.1) 

Next we introduce the Fourier transform of the average resolvent with this 
modified distribution: 

U,,(t)=(1Tre"C*cl~ ' 

from which we recover the eigenvalue density 

f i (s)= -.-~. ~-~e-mUo(t)= ~ Tr c~(s-C*C) 

7 For notational simplicity we set m-'= I in 12.31 throughout this section. 

(5.2) 

(5.31 
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of C*C after setting the source A to zero. Without loss of generality we can 
assume that A is a diagonal matrix. Let us now calculate UA(t). We first 
integrate over the N x N unitary matrix U which diagonalizes C*C. This is 
done through the well-known Itzykson-Zuber integral over the unitary 
group~ 22 

I dU exp(Tr A U BU*) 
det[ e"~h/~] 

(5.4) 
A(A) A(B) 

where A(A) is the Vandermonde determinant constructed with the eigen- 
values of A: 

A(A)= l-[ (a~-a/~) (5.5) 
~ < p '  

(b~ ..... bN) are the eigenvalues of B, and A(B) is the Vandermonde determi- 
nant built out of them. We are then led to 

UA(t) 1 1 u ~dst dsNei'"~A(sl, SN) 
Z A ~ I A )  ;V~ ~ . . . . . . .  

x stj exp - ~ s~,(1 +a~,) (5.6) 
I ) , = 1  

We now integrate over the s~. It is easy to prove (for example, by using the 
Faddeev-Popov method) that 

I[~= IA4 - N 
dsl " " d S N Z J ( s I  ..... SN) Sfl 

I 

A(bt ..... bN) 
= c~,  (FI'~ b~) '~' 

 xp(_ 
(5.7) 

where CN 1S a constant independent of the b,. Note that (5.7) is valid also 
for M = N. With the normalization UA(0) = 1, we could always divide, at 
any interrriediate step of the calculation, the expression we obtain for UA(t) 
by its value at t = 0, and thus the overall multiplicative factors in (5.6) and 
(5.7) are not needed. 

We now apply this identity to the N terms of (5.6), with 

~ fi~./~ (5.8) b t~ ( t ) = , l - f i N  1 + a ~, 
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and obtain 

IN ( i+o,  
u,,(t) =-# Z 

/t<~, a/t--a~. 

I ~. ( l+a~ y "  a r - i t A / - M - N  
~ - -  l '-I a ~ - -  

N ~=, 1 + a~ - i t lv/-MNJ ~ ~ ~ a~ - a~. 
(5.9) 

As a consistency check, note that for M = N, (5.9) coincides with Eq. (3.9) 
of ref. 7. This sum over N terms may be conveniently replaced by a contour 
integral in the complex plane: 

UA(') i ~  du ( I +u )A,t fi u_ar_it/~-~- ~ (5.10) 
-- t ~ 1 + u -- it/~/--M--NJ ~.=, ,-t -- a,----~. 

in which the contour encloses all the a r and no other singularity. It is now, 
and only now, possible to let all the a r go to zero. We thus obtain a simple 
expression for Uo(t), 

i ~  t ~ du (1 --it/~l ~r-m-N) N 
t ) 

2ni(1 -- it/( l + u) ~ ) , , t  
(5.11) 

Note that this representation of Uo(t) as a contour  integral over one single 
complex variable is exact for any finite M, N, including M = N =  1. 

5.2. The Density of States 

In the large-M, N limit (with finite r = M/N) ,  for finite t, the integrand 
in (5.11 ) becomes 

and therefore Uo(t) approaches 

d,, ( , 5  + Uo(t) = y ~  ~/exp [i t  \1  - u  u ~ ' J ]  (5.12) 

where we changed u into - u .  
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Setting 

1 47 
Z ~  m 

ux/~ ~ ' l - u  

we change variables to 

z-- f r  + 1 I f ' -  r  f "  + 1/~r)2-4z/x/~r 
L t - -  

2z 
(5.13) 

Then the integral of (5.12) becomes, after an integration by parts, 

r dz du i,- 
Uoi/)=-h-~ ~ g e  - 

[ 1 ; (  x~r) 2 4~r] ei': - -  z - -  

~/r �9 

_- ~ ~. f,,-',_. ~x x j ( . 2 _  x)( x -  ~:~ e"' (5.14) 

where a and b are given in (2.14). Therefore, we have from (5.3) 

~ dt 
fi(s)= -~n e - "" Uo( t ) 

4~" ~ / ( a  2 - s ) ( s  - b 2) 

2n s 
(5.15) 

for b2~< s ~< a 2, and zero elsewhere. This expression coincides with (4.14) as 
expected. We observe from (1.9) that p(2) and fi(s)=/5(2 2) are related by 

r - 1  2121 
P('~) =r -7~  �9 a(~) + .-7-~ ~(,C-) 

(5.16) 

Substituting (5.15) into (5.16), we obtain (2.17) once again, as we should. 
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5.3. The Edges of the Eigenvalue Distr ibut ion 

It is easy to apply this same method for studying the crossover at the 
edges of the eigenvalue distributions (2.17) or (5.15), namely in the vicinity 
of the endpoints s = a 2 and s = b 2. To this end, we observe from (5.3) and 
(5.11 ) that 

f,. 
OS ..... ~ e -  i,., = 2gi(1--~;  ~ - - r - -~  ~u ) )  M 

(5.17) 

where the purpose of the s derivative is to get rid of the simple pole at t = 0 
in (5.11). By changing t to x/-M-Nt and then t to t+iu,  as well as u to - iu ,  
we obtain the factorized expression 

a~(s)o___s___ i M ( f  ~_~2-~ndt e_i,/;i-~,.,. (t t--~i)M) 

(~ dU ei 4Ti-~,,.,. (u + i)M ~ 
• \ 2~i u g J 

(5.18) 

The advantage of (5.18) is that it is relatively easy to study its large-N, M 
behavior by saddle-point techniques. We observe that the t integral may be 
written as 

IN. M = dt e -  ~ s,,- (5.19) 

where Sctr is given by 

S~, r = ist + ~ log(t + i) - ~ r  log t (5.20) 

Similarly, the integrand of the u integration is exp(x//NM Sen-). Thus, the 
large-N, M behavior of (5.17) is determined by the saddle points of a single 
function Sen-. Consider the t integral (5.19) first. It has two saddle points 
t,. at 

s - ab +_ x/(s  - a2)(s - b 2) 
t , . -  (5.21) 

2is 

where a, b are given in (2.14). The interesting situation occurs when these 
two saddle points become degenerate, namely at the endpoints s = 22= a 2 
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and s = 22= b 2. We thus investigate (5.17) at the vicinity of these points by 
focusing on these regions. Let us consider the neighborhood of 2 = a first 
(the crossover behavior around 2 = - a  is simply the mirror image 
thereof.) We introduce the scaled variables 

2 = a  + N - ~ x  

1 (5.22) 
t = - i - - +  N-/~r 

, / ;  + l 

with ~, fl to be determined, and expand Sen- up to t -3. This leads to 

Se~(t) = S .  + 2 r -  l / 4N-ax  --}- �89 - 3/~ + 2 iaN-~  -/~rx + . . .  (5.23) 

where S .  is the value of Seer at the critical point, and the ellipsis stands for 
terms of (9(N-2~). We thus find that there is a large-N, finite-x limit, 
provided we fix the two unknown exponents ~ and fl to 

~=2 /3 ,  f l=  1/3 (5.24) 

We repeat this for the u integral of (5.18). We then find that the leading 
terms of (5.23) of order 1, as well as the term 2 x N  -2/3, cancel with terms 
of opposite signs in the u integral. Thus we obtain the following equation 
for the density of state near the critical value s = a 2 or ;t = __+ a: 

a/~(22) M,/3(S~_r~ 2/3 A i I 2 ( r ) t / 3 N 2 / 3 ( 2 _ T _ a ) l  2 
0~. 2 - \ a" / (5.25) 

where the Airy function Ai(z)  is defined as 

Ai[ (3c~) -1/3 x]  = (3ct)1/3 cos(~t 3 + xt )  dt (5.26) 
7~ 

The Airy function in (5.25) is smoothly decreasing for ]21>a, but it 
oscillates for I;ll < a. 

Investigation of the behavior of (5.18) near the other critical points 
2 =  + b  proceeds similarly. Concentrating on 2 = b ,  we introduce the 
scaling variables 

2 = b +  N - ~ x  

i 
t = - - +  N - / %  

, / 7 - 1  

(5.27) 
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and find that there is a large-N, finite-x limit, provided we fix the two 
unknown exponents 0c and fl to the same values as before. Thus, the cross- 
over behavior of the density of states around 3.-- +_ b is governed by the 
Airy function as well for any r > 1. 

A new phenomenon appears, however, if we also take the limit r-~ 1. 
It is easy to see, by rescaling ~ in the expansion of S~j~. into 

T =  ( x / ~ -  1) z (5.28) 

that the Airy function behavior of Ofi(2"-)/O22 near 2 = ___ b breaks down as 
r--* 1. Indeed, from previous work ~1-81 we know that the oscillations near 
the origin in the density of the eigenvalues of matrices built out of square 
blocks ( r =  1) are governed by the Bessel function and not by the Airy 
function. 

APPENDIX .  THE CENTRAL L IM IT  T H E O R E M - -  
A R E N O R M A L I Z A T I O N  G R O U P  PROOF 

As a simple, but perhaps amusing exercise we use the large-N renor- 
malization group discussed in Section 3 to prove the celebrated central 
limit theorem of Gauss. 

Consider a set of N independent random variables {x~, x2 ..... XN} 
which are distributed according to some distribution function 

N 

QN(XI . . . . .  XN) = I-[ Q(XA (A.1) 
i = [  

In order to be consistent with our normalization conventions in Section 3, 
we normalize this distribution function such that 

O'-  
<xi> = 0, <x;.~/> = ~55 6~/ (A.2) 

where f l>O is yet to be determined. Thus, a typical term drawn from 
QN(X) is of the order aN -I~. We wish to calculate the distribution function 
of the sum of these random numbers, namely, the quantity 

i = [  

where ( . ) N  denotes averaging with respect to QN(X). In principle, PN 
depends upon all the cumulants of Q,v(x), but we expect that the large-N 
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limit of PN will depend only upon a. Following our discussion in Section 3, 
we now consider a set of N + 1 random variables whose distribution function 
QN+ ~(x) is normalized such that 

O -2 
( x i )  =0 ,  (xi"~i) - ( N +  1) 2fl60 (A.4) 

Then, 

PN+ I( S, O-) = <C5 ( S - -  , )) Z Xi-- XN+ I 
/=1 N+I  

x,)>,,,+ 

+2(N-~l)2flOs2 6 s -  xi + ... (A.5) 
i = 1  N + I  

where we used (A.4). The ellipsis stands for cumulants of order higher than 
two, which are clearly suppressed by powers of N -/~, and we neglect them 
henceforth. Comparing (A.2) and (A.4), we also see that 

with 

(<,0_ z :<,)> :,,,,,<,,o.,, <A.6, 
i=1 N+I  

, / N \ /~  / 

~ : t ~ J  ~  + " (a.~) 

We now use (A.6) and (A.7) to rewrite (A.5) as 

( / 3 0  a 2 8 2  ) 
P N +  i(S, O-) = 1 -- ~ o ~--~a + 2~_/~ a-~2 PN(S,O-) (A.8)  

where we neglected terms of (_9(1/N2/~+t). We observe from (A.8) that 
variations of a are as important as variations of s in the large-N limit 
only if 

fl = 1/2 (A.9) 
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which fixes ]/. We thus conclude that 

N ON 2 ~ Pu(s,a) (A.10) 

The left-hand side of (A.9) must vanish if P,v has a large-N limit 

P N ( S ' O ' )  U . . . . .  ' P(s,a) (A.11) 

and thus 

Feinberg and Zee 

which implies that 

~a O a P= -P-S -~sP  (A.14) 

Substituting (A.14) in (A.12), we finally obtain the differential equation 

, 0  2 0 ) 
a- ~s2 +S~ss+ 1 e(s,a)=O (A.15) 

We solve (A.15) and find that its normalized solution is the Gaussian 
distribution 

( 1 exp - ~ a  2 (A.16) 
o) = 4 %  o 

which is the statement of the central limit theorem. The proof of the central 
limit theorem presented here is not any simpler than the conventional 
proof found in textbooks. 

0 2 0'~ 
a ~ -  ~ j  P(s, ~) = 0. (h.12) 

A simple scaling argument similar to the one invoked in Section 3 leads to 
the relation 

P(s, a) = -  P ,1 (A.13) 
o 
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The generalization of this proof to the case 123~ of adding a large 
number N of K x  K matrices {~b~ ..... ~bN} is straightforward. In this case s 
and P(s, a) are Kx  K matrices. We take these matrices to be real (the 
Hermitian case can be treated similarly.) Then (A.15) becomes 

8 2 O ) 
a2 as','. Os~---~, + s',', ~ + 1 P(s, a)  = 0 (A.17) 

where/~, v are indices of the K x K matrices (repeated indices are summed 
over.) The normalized solution of (A.17) is the Gaussian distribution 

Tr s 2 "~ 
P(s, a) = (~ /~  Ka)_•2 exp 2K2a2j (A.18) 
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